
Research Statement — James R. Garrison

My research in quantum condensed matter theory is guided by a desire to investigate and understand the
vast landscape of collective phenomena that can emerge frommany-particle quantummechanics. Whether
it is electron transport in a solid or trapped ions interacting via long-range effective magnetic interactions,
I am most interested in phenomena that can realistically be probed in near- to intermediate-term experi-
ments.

My work builds upon knowledge from a number of areas, including atomic/molecular/optical (AMO)
physics, high-performance scientific computing, quantum information, and computational complexity the-
ory. My specific research interests include the dynamics of isolated quantum systems, zero-temperature
phases of matter, and methods for simulating quantum mechanics. One broad theme that unifies these
areas is the central importance of quantum entanglement.

Dynamics and thermalization of isolated quantum systems

Over the past few decades, experimental developments have provided platforms that are effectively isolated
from the remainder of the universe on any relevant timescale, including, most notably, ultracold atoms
with interactions tunable via Feshbach resonance [17, 18]. Such systems have enabled the direct study of
nonequilibrium phenomena, including thermalization, localization [19–21], and particle transport [22].

One very fundamental problem in quantum statistical mechanics involveswhether—and how—an iso-
lated quantum system will thermalize at long times [23]. In quantum systems that do thermalize, the
long-time expectation value of any “reasonable” operator will match its predicted value in the appropriate
thermal ensemble. The eigenstate thermalization hypothesis (ETH) posits that this thermalization occurs
at the level of each individual energy eigenstate [24–27]. My principal work in this field has involved
identifying precisely which operators satisfy ETH, as well as the limits to the information contained in a
single eigenstate [4]. Remarkably, a single eigenstate can contain information about energy densities—and
therefore temperatures—far away from the energy density of the eigenstate. Follow-up work by others has
provided evidence that a single eigenstate can even provide information regarding the critical behavior of
a finite-temperature phase transition [28].

Notable exceptions to thermalization also exist, including integrable systems [29, 30], as well as those
that exhibit many-body localization (MBL) due to a strong disorder potential [31–33]. One previous re-
search project studied to what extent MBL can survive in a model system in which coupling is introduced
between a disordered chain (which alone would exhibit localization) and a clean chain [5]. Another project
demonstrated that the entanglement structure of eigenstates of noninteracting disorder models imply an
emergent geometry in which the thermalization/localization status of the state is apparent [7]. Can MBL
be used to store long-term quantummemories robustly? This question has both philosophical and practical
relevance. Future work in this field will surely involve further probing the localization-to-thermalization
transition, as well as making additional connections with experiment.

Another intriguing open question is whether there exist phases of matter that are neither fully ther-
malized nor localized—that is, phases which are non-ergodic despite entanglement that grows linearly
with time [34–37]. Together with collaborators, I have provided numerical evidence for two qualitatively
distinct types of states at overlapping energy densities in an extended Hubbard model, suggesting a clear
violation of ETH in a non-integrable, translationally invariant system [6]. Recent work by others has
suggested that a similar phenomenon, dubbed “quantum many-body scars,” has revealed itself in the dy-
namics of a Rydberg atomic simulator [38]. This is a challenging field with important implications for
isolated quantum systems and even quantum gravity, with analogy to the “no-hair theorem” for classical
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black holes [39]. Without a doubt, progress with require a complex interplay among theory, experiment,
and simulation.

I am also interested in the short- to intermediate-time dynamics of isolated quantum systems. One
recent work considered Abelian anyons in one dimension following a quench, where we demonstrated
asymmetry in particle transport and in information propagation, as studied via the out-of-time-ordered
correlator [12]. Another recent work demonstrated a connection between a dynamical phase transition
and the ground-state phase transition for systems near integrability [13], the consequences of which are
accessible at prethermal (i.e., intermediate) time scales. Looking forward, I am most intrigued by simu-
lation methods that may potentially allow the efficient and accurate probing of transport dynamics and
hydrodynamic properties at intermediate times. Early progress has been made by using certain matrix-
product-state methods, such as time-dependent variational principle [40] and density matrix truncation
[41]. To what extent can classical simulation provide insight into intermediate-time dynamics, which are
typically thought to be difficult or impossible to model on a classical computer? Exploring this question
is sure to reveal deep insights into the dynamics of quantum matter, with implications for quantum infor-
mation spreading and computational complexity theory.

Unconventional zero-temperature phases of quantum matter

The study of equilibrium phases is the traditional centerpiece of condensed matter physics. Along this
front, I ammost interested in unconventional, “quantum” phases of matterwhich exist at zero-temperature.
These unconventional phases include those that lie beyond the standard symmetry-breaking and quasipar-
ticle paradigms (both due to Landau), as well as phases with unusual entanglement properties, e.g. those
whose ground state(s) violate the entanglement “area law” despite the existence of an energy gap between
the ground state and first excited state.

One long-term goal of my research is to develop a sophisticated understanding of ground-state phases
in systemswith long-range interactions, specifically those that decay as a power law 1/rα with distance r.
This goal is motivated by experimentalists’ increasing ability to realize such interactions in AMOplatforms,
including interacting Rydberg atoms (α = 3 electric dipole-dipole or α = 6 van der Waals interactions)
[42, 43], polarmolecules (α = 3 electric dipole-dipole interactions) [44], and trapped ions (tunable 0 ≤ α ≤
3 phonon-mediated interactions) [45]. Such engineered platforms lie in stark contrast to the traditional
setting of solid-state physics—i.e., metals—where long-range interactions are absent due to screening [46].
Despite these developments, much of physicists’ thinking today—including even our best definition ofwhat
constitutes a distinct “gapped” phase of matter [47]—assumes only short-range, “local” interactions are
present. Recent works have demonstrated that power-law decaying interactions enable many behaviors
thought to be impossible in systems with only local interactions. For instance, it is possible to go through
a topological phase transition without closing the gap if such interactions are present [48]. Other work
has demonstrated the existence of a gapped phase in the one-dimensional long-range Ising model that
violates the entanglement “area law” and exhibits correlation functions that decay as a polynomial [49].
Motivated by the latter development, I am currently working to better understand the phase diagram of
the long-range Ising model in dimensions greater than one.† One exciting possibility is that long-range
interactions will enable the existence of novel phases with no short-range counterpart. In any case, I
expect that the study of long-range interactions will enable—and require—us, as physicists, to develop a
more sophisticated framework for understanding quantum phases of matter.

†“Zero-temperature properties of the long-range transverse-field Ising model on the triangular lattice,” Kevin Wang, Alexey V.
Gorshkov, and James R. Garrison (in preparation).
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I am also broadly interested in unconventional phases of matter beyond the standard quasiparticle
paradigm. For instance, the “strange metal” phase which exists above the superconducting transition
temperature in the copper-oxide, high-temperature superconductors is a striking example of a conducting
phase that appears to violate Landau’s Fermi liquid theory [50, 51]. I was involved with one of the earliest
works that explicitly constructed a non-Fermi liquid phase distinct from a Luttinger liquid [2]. Another
previous research project involved a study of variational wavefunctions for gapless spin liquids, motivated
by experimental results on organic weak Mott insulators [3]. I expect that future progress in this area will
require the convergence of insights gained from a variety of subfields, from new experimental probes, to
improved numerical simulation and theoretical connections to quantum information.

Classical and quantum simulation of many-particle quantum mechanics

Developments in condensed matter physics have always relied on a close interplay between theory and
experiment. In recent years, the simulation of quantummechanics—most notably via numerical methods—
has become a third pillar, enabling deeper physical understanding [52]. In some cases, simulation can take
the role of an idealized experiment, providing exact results in systems that are unamenable to known
analytic approaches. In others, simulation is more akin to theory, allowing us to better understand the
effects of conjectured theoretical approximations and simplifications.

The classical simulation of quantum mechanics via numerical methods is a field with growing impor-
tance. Exact diagonalization methods allow us to query the behavior of model Hamiltonians at small
system sizes, including ground states, excited states, thermal states, and dynamics [53, 54]. Monte Carlo
techniques include both exact (e.g. the stochastic series expansion [55]) and approximate (e.g. variational
Monte Carlo [56]) methods, and can provide invaluable insight in situations where the “sign problem”
[57] is absent. Tensor-network methods provide a conceptual framework for simulating states with lim-
ited entanglement. Most notably, the matrix-product-state ansatz [58, 59] has revolutionized our ability to
simulate (quasi-)one-dimensional systems through suchmethods as the ground-state density-matrix renor-
malization group (DMRG) [60], the time-evolving block decimation (TEBD) [61], and the time-dependent
variational principle (TDVP) [62, 63]. I have personally implemented each of the aforementioned methods.
My software development knowledge draws upon decades of experience, including time spent profession-
ally as a full-time software engineer for a #1-ranked computer science department.

I expect that my research group will be at the forefront of using numerical techniques to make progress
in the research areas described in the previous sections, and I expect that we will be equally invested in
improving the techniques and algorithms themselves. Looking forward, more advanced tensor-network
methods, including themulti-scale entanglement renormalization ansatz (MERA) [64] and projected entangled-
pair states (PEPS) [65, 66], have the potential to bring the power of simulation methods to gapless systems,
as well as systems in dimension greater than one. Likewise, improved Monte Carlo methods will enable
the simulation of systems that are currently intractable, just as they have in the past [52].

Of course, generic and exact simulation of quantum mechanics appears to require resources that scale
exponentially with system size, thus rendering every classical simulation method intractable beyond a cer-
tain point. It was this realization that prompted Richard Feynman, in 1981, to propose the development of
quantum computers as devices which can harness the power of quantum mechanics for simulating quan-
tum mechanics [67]. Nowadays, such quantum simulation methods have both analog and digital variants.
Analog quantum simulators are highly controlled and tuned quantum systems designed tomodel a desired
Hamiltonian. One example of such a system is ultracold atoms in an optical lattice, in which experimen-
talists demonstrated in 2002 the superfluid to Mott insulator phase transition in the Bose-Hubbard model
[68]. Along this front, one of my collaborations has developed a method for state preparation of a Chern
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insulator in a cold atomic gas, based on a continuous version of MERA together with a long-range, engi-
neered Hamiltonian [9]. I am also interested in digital quantum simulation, i.e., methods for simulating
quantum mechanics on coherently controlled, gate-based quantum computers. My work with collabora-
tors includes the best algorithm known to date for systems with power-law decaying interactions [10]. I
have also worked to improve methods for simulating fermionic quantum field theory on a quantum com-
puter [16]. Looking forward, I expect that hybrid algorithms, which combine aspects of both classical and
quantum simulation, will be important on early quantum computers—so-called noisy, intermediate-scale
quantum (“NISQ”) devices [69].

Quantum entanglement in many-body systems

Quantum entanglement is one broad theme that unites each of the above research areas. Our growing
understanding of—and ability to calculate—the entanglement structure of many-body quantum systems
has provided remarkable insight into their properties. It has allowed us to diagnose and characterize both
ground state phases [70] and states at finite energy density [71]. Understanding the connection between
entanglement and matrix-product states has given us the ability to classically simulate states with limited
entanglement [72]. Conversely, for a quantum algorithm to result in a quantum speed-up, it must generate
sufficient entanglement; otherwise it could have been efficiently simulated on a classical computer.

Entanglement appears in a number of other contexts as well. For instance, quantum speed limits
known as “Lieb-Robinson bounds” place theoretical restrictions on the rate at which information can
propagate in a non-relativistic quantum system [73]. These bounds have profound implications both for
the dynamical spreading of entanglement and for the amount of entanglement permissible in a system’s
ground state (e.g., the so-called “area law”) [74]. Together with collaborators, my work on this front has
explored Lieb-Robinson bounds on multipartite correlation functions [8] and provided a tighter light cone
for systems with long-range interactions that decay as a power law [10].

Entanglement is at the heart of quantum condensed matter physics. Already, much has been gained
from the calculation of relatively simple quantities, including the von Neumann and Rényi entanglement
entropies, as well as the spectra of bipartite cuts [75]. Looking forward, I expect that developments in
quantum information theory will continue to provide new ways of probing and understanding the struc-
ture of entanglement in quantum matter, leading us to a deeper physical intuition.

Publications and preprints

[1] “A novel hybrid simulation for study of multiscale phenomena,” P. E. Krouskop, J. Garrison, P. C.
Gedeon, and J. D. Madura, Molecular Simulation 32, 825 (2006).

[2] “Non-Fermi-liquid d-wave metal phase of strongly interacting electrons,” H.-C. Jiang, M. S. Block, R. V.
Mishmash, J. R. Garrison, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Nature 493, 39 (2013)
[arXiv:1207.6608].

[3] “Theory of a Competitive Spin Liquid State for Weak Mott Insulators on the Triangular Lattice,” Ryan
V. Mishmash, James R. Garrison, Samuel Bieri, and Cenke Xu, Phys. Rev. Lett. 111, 157203 (2013)
[arXiv:1307.0829].

[4] “Does a single eigenstate encode the full Hamiltonian?” James R. Garrison and Tarun Grover, Phys.
Rev. X 8, 021026 (2018) [arXiv:1503.00729].

4

http://arxiv.org/abs/1207.6608
http://arxiv.org/abs/1307.0829
http://arxiv.org/abs/1503.00729


[5] “Many-body localization in the presence of a small bath,” Katharine Hyatt, James R. Garrison, Andrew
C. Potter, and Bela Bauer, Phys. Rev. B 95, 035132 (2017) [arXiv:1601.07184].

[6] “Partial breakdown of quantum thermalization in a Hubbard-like model,” James R. Garrison, Ryan V.
Mishmash, and Matthew P. A. Fisher, Phys. Rev. B 95, 054204 (2017) [arXiv:1606.05650].

[7] “Extracting entanglement geometry from quantum states,” Katharine Hyatt, James R. Garrison, and
Bela Bauer, Phys. Rev. Lett. 119, 140502 (2017) [arXiv:1704.01974].

[8] “Lieb-Robinson bounds on n-partite connected correlation functions,” Minh Cong Tran, James R. Gar-
rison, Zhe-Xuan Gong, and Alexey V. Gorshkov, Phys. Rev. A 96, 052334 (2017) [arXiv:1705.04355].

[9] “Scale-Invariant Continuous Entanglement Renormalization of a Chern Insulator,” Su-KuanChu, Guanyu
Zhu, James R. Garrison, Zachary Eldredge, Ana Valdés Curiel, Przemyslaw Bienias, I. B. Spielman,
and Alexey V. Gorshkov, Phys. Rev. Lett. 122, 120502 (2019) [arXiv:1807.11486].

[10] “Locality and digital quantum simulation of power-law interactions,” Minh C. Tran, Andrew Y. Guo,
Yuan Su, James R. Garrison, Zachary Eldredge, Michael Foss-Feig, Andrew M. Childs, and Alexey V.
Gorshkov, Phys. Rev. X 9, 031006 (2019) [arXiv:1808.05225].

[11] “Unitary entanglement construction in hierarchical networks,” Aniruddha Bapat, Zachary Eldredge,
James R. Garrison, Abhinav Desphande, Frederic T. Chong, and Alexey V. Gorshkov, Phys. Rev. A
98, 062328 (2018) [arXiv:1808.07876].

[12] “Asymmetric Particle Transport and Light-Cone Dynamics Induced by Anyonic Statistics,” Fangli Liu,
James R. Garrison, Dong-Ling Deng, Zhe-Xuan Gong, and Alexey V. Gorshkov, Phys. Rev. Lett. 121,
250404 (2018) [arXiv:1809.02614].

[13] “Probing Ground-State Phase Transitions through Quench Dynamics,” Paraj Titum, Joseph T. Iosue,
James R. Garrison, Alexey V. Gorshkov, and Zhe-Xuan Gong, Phys. Rev. Lett. 123, 115701 (2019)
[arXiv:1809.06377].

[14] “Circuit complexity across a topological phase transition,” Fangli Liu, Seth Whitsitt, Jonathan B. Cur-
tis, Rex Lundgren, Paraj Titum, Zhi-Cheng Yang, James R. Garrison, and Alexey V. Gorshkov, Phys.
Rev. Research 2, 013323 (2020) [arXiv:1902.10720].

[15] “Entanglement bounds on the performance of quantum computing architectures,” Zachary Eldredge,
Leo Zhou, Aniruddha Bapat, James R. Garrison, Abhinav Deshpande, Frederic T. Chong, and Alexey
V. Gorshkov, Phys. Rev. Research 2, 033316 (2020) [arXiv:1908.04802].

[16] “Site-by-site quantum state preparation algorithm for preparing vacua of fermionic lattice field the-
ories,” Ali Hamed Moosavian, James R. Garrison, and Stephen P. Jordan [arXiv:1911.03505].

References

[17] S. Inouye, M. R. Andrews, J. Stenger, H.-J.Miesner, D.M. Stamper-Kurn, andW.Ketterle, “Observation
of Feshbach resonances in a Bose–Einstein condensate,” Nature 392, 151 (1998).

[18] E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, “Dynamics
of collapsing and exploding Bose–Einstein condensates,” Nature 412, 295 (2001).

5

http://arxiv.org/abs/1601.07184
http://arxiv.org/abs/1606.05650
https://arxiv.org/abs/1704.01974
https://arxiv.org/abs/1705.04355
https://arxiv.org/abs/1807.11486
https://arxiv.org/abs/1808.05225
https://arxiv.org/abs/1808.07876
https://arxiv.org/abs/1809.02614
https://arxiv.org/abs/1809.06377
https://arxiv.org/abs/1902.10720
https://arxiv.org/abs/1908.04802
https://arxiv.org/abs/1911.03505
http://dx.doi.org/ 10.1038/32354
http://dx.doi.org/10.1038/35085500


[19] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Mon-
roe, “Many-body localization in a quantum simulator with programmable random disorder,” Nature
Physics 12, 907 (2016), arXiv:1508.07026 [quant-ph] .

[20] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider,
and I. Bloch, “Observation of many-body localization of interacting fermions in a quasirandom optical
lattice,” Science 349, 842 (2015), arXiv:1501.05661 [cond-mat.quant-gas] .

[21] S. S. Kondov, W. R. McGehee, W. Xu, and B. DeMarco, “Disorder-induced localization in a strongly
correlated atomic hubbard gas,” Phys. Rev. Lett. 114, 083002 (2015), arXiv:1305.6072 .

[22] C.-C. Chien, S. Peotta, and M. Di Ventra, “Quantum transport in ultracold atoms,” Nature Physics 11,
998 (2015).

[23] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, “From quantum chaos and eigenstate ther-
malization to statistical mechanics and thermodynamics,” Advances in Physics 65, 239 (2016),
arXiv:1509.06411 [cond-mat.stat-mech] .

[24] J. M. Deutsch, “Quantum statistical mechanics in a closed system,” Phys. Rev. A 43, 2046 (1991).

[25] M. Srednicki, “Chaos and quantum thermalization,” Phys. Rev. E 50, 888 (1994).

[26] M. Srednicki, “The approach to thermal equilibrium in quantized chaotic systems,” Journal of Physics
A: Mathematical and General 32, 1163 (1999), cond-mat/9809360 .

[27] M. Rigol, V. Dunjko, and M. Olshanii, “Thermalization and its mechanism for generic isolated quan-
tum systems,” Nature 452, 854 (2008), arXiv:0708.1324 [cond-mat.stat-mech] .

[28] K. R. Fratus and S. V. Truong, “Does a Single Eigenstate of a Hamiltonian Encode the Criti-
cal Behaviour of its Finite-Temperature Phase Transition?” arXiv:1810.11092 [cond-mat] (2018),
arXiv:1810.11092 [cond-mat] .

[29] P. Calabrese and J. Cardy, “Entanglement and correlation functions following a local quench: a con-
formal field theory approach,” Journal of Statistical Mechanics: Theory and Experiment 10, 4 (2007),
arXiv:0708.3750 [cond-mat.stat-mech] .

[30] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, “Relaxation in a Completely Integrable Many-
Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D
Lattice Hard-Core Bosons,” Phys. Rev. Lett. 98, 050405 (2007), cond-mat/0604476 .

[31] V. Oganesyan and D. A. Huse, “Localization of interacting fermions at high temperature,” Phys. Rev.
B 75, 155111 (2007), cond-mat/0610854 .

[32] A. Pal and D. A. Huse, “Many-body localization phase transition,” Phys. Rev. B 82, 174411 (2010),
arXiv:1010.1992 [cond-mat.dis-nn] .

[33] D. J. Luitz, N. Laflorencie, and F. Alet, “Many-body localization edge in the random-field Heisenberg
chain,” Phys. Rev. B 91, 081103 (2015), arXiv:1411.0660 [cond-mat.dis-nn] .

[34] T. Grover and M. P. A. Fisher, “Quantum disentangled liquids,” Journal of Statistical Mechanics: The-
ory and Experiment 10, 10010 (2014), arXiv:1307.2288 [cond-mat.str-el] .

6

http://dx.doi.org/10.1038/nphys3783
http://dx.doi.org/10.1038/nphys3783
http://arxiv.org/abs/1508.07026
http://dx.doi.org/ 10.1126/science.aaa7432
http://arxiv.org/abs/1501.05661
http://dx.doi.org/ 10.1103/PhysRevLett.114.083002
http://arxiv.org/abs/1305.6072
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1038/nphys3531
http://dx.doi.org/10.1080/00018732.2016.1198134
http://arxiv.org/abs/1509.06411
http://dx.doi.org/ 10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1088/0305-4470/32/7/007
http://dx.doi.org/10.1088/0305-4470/32/7/007
http://arxiv.org/abs/cond-mat/9809360
http://dx.doi.org/ 10.1038/nature06838
http://arxiv.org/abs/0708.1324
http://arxiv.org/abs/1810.11092
http://dx.doi.org/10.1088/1742-5468/2007/10/P10004
http://arxiv.org/abs/0708.3750
http://dx.doi.org/ 10.1103/PhysRevLett.98.050405
http://arxiv.org/abs/cond-mat/0604476
http://dx.doi.org/ 10.1103/PhysRevB.75.155111
http://dx.doi.org/ 10.1103/PhysRevB.75.155111
http://arxiv.org/abs/cond-mat/0610854
http://dx.doi.org/ 10.1103/PhysRevB.82.174411
http://arxiv.org/abs/1010.1992
http://dx.doi.org/ 10.1103/PhysRevB.91.081103
http://arxiv.org/abs/1411.0660
http://dx.doi.org/10.1088/1742-5468/2014/10/P10010
http://dx.doi.org/10.1088/1742-5468/2014/10/P10010
http://arxiv.org/abs/1307.2288


[35] M. Schiulaz and M. Müller, “Ideal quantum glass transitions: Many-body localization without
quenched disorder,” in American Institute of Physics Conference Series, American Institute of Physics
Conference Series, Vol. 1610 (2014) p. 11, arXiv:1309.1082 [cond-mat.dis-nn] .

[36] J. M. Hickey, S. Genway, and J. P. Garrahan, “Signatures of many-body localisation in a system
without disorder and the relation to a glass transition,” Journal of Statistical Mechanics: Theory and
Experiment 2016, 054047 (2016).

[37] N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E. Moore, “Quasi-many-body localization in
translation-invariant systems,” Phys. Rev. Lett. 117, 240601 (2016), arXiv:1410.7407 [cond-mat.dis-nn]
.

[38] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis, Z. Papić, M. Serbyn, M. D. Lukin, and
D. A. Abanin, “Emergent SU(2) dynamics and perfect quantum many-body scars,” Phys. Rev. Lett.
122, 220603 (2019), arXiv:1812.05561 .

[39] S. Khlebnikov and M. Kruczenski, “Thermalization of isolated quantum systems,” ArXiv e-prints
(2013), arXiv:1312.4612 [cond-mat.stat-mech] .

[40] E. Leviatan, F. Pollmann, J. H. Bardarson, D. A. Huse, and E. Altman, “Quantum thermalization
dynamics withMatrix-Product States,” ArXiv e-prints (2017), arXiv:1702.08894 [cond-mat.stat-mech]
.

[41] C. D. White, M. Zaletel, R. S. K. Mong, and G. Refael, “Quantum dynamics of thermalizing systems,”
Phys. Rev. B 97 (2018), 10.1103/physrevb.97.035127.

[42] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, and M. D. Lukin, “Fast quantum gates for neutral
atoms,” Phys. Rev. Lett. 85, 2208 (2000), arXiv:quant-ph/0004038 .

[43] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg Quantum Simulator,”
Nature Physics 6, 382 (2010), arXiv:0907.1657 .

[44] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Obser-
vation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521
(2013).

[45] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J.
Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with
hundreds of spins,” Nature 484, 489 (2012), arXiv:1204.5789 [quant-ph] .

[46] N. Ashcroft and N. Mermin, Solid State Physics, HRW International Editions (Holt, Rinehart andWin-
ston, 1976).

[47] X. Chen, Z.-C. Gu, and X.-G.Wen, “Local unitary transformation, long-range quantum entanglement,
wave function renormalization, and topological order,” Phys. Rev. B 82, 155138 (2010), arXiv:1004.3835
[cond-mat.str-el] .

[48] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G. Pupillo, “Kitaev Chains with Long-Range
Pairing,” Phys. Rev. Lett. 113, 156402 (2014), arXiv:1405.5440 [cond-mat.str-el] .

7

http://dx.doi.org/10.1063/1.4893505
http://arxiv.org/abs/1309.1082
http://stacks.iop.org/1742-5468/2016/i=5/a=054047
http://stacks.iop.org/1742-5468/2016/i=5/a=054047
http://dx.doi.org/ 10.1103/PhysRevLett.117.240601
http://arxiv.org/abs/1410.7407
http://dx.doi.org/10.1103/PhysRevLett.122.220603
http://dx.doi.org/10.1103/PhysRevLett.122.220603
http://arxiv.org/abs/1812.05561
http://arxiv.org/abs/1312.4612
http://arxiv.org/abs/1702.08894
http://dx.doi.org/10.1103/physrevb.97.035127
http://dx.doi.org/ 10.1103/PhysRevLett.85.2208
http://arxiv.org/abs/quant-ph/0004038
http://dx.doi.org/10.1038/nphys1614
http://arxiv.org/abs/0907.1657
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature10981
http://arxiv.org/abs/1204.5789
http://dx.doi.org/ 10.1103/PhysRevB.82.155138
http://arxiv.org/abs/1004.3835
http://arxiv.org/abs/1004.3835
http://dx.doi.org/10.1103/PhysRevLett.113.156402
http://arxiv.org/abs/1405.5440


[49] T. Koffel, M. Lewenstein, and L. Tagliacozzo, “Entanglement Entropy for the Long-Range Ising Chain
in a Transverse Field,” Phys. Rev. Lett. 109, 267203 (2012), arXiv:1207.3957 [cond-mat.str-el] .

[50] P. A. Lee, N. Nagaosa, and X.-G. Wen, “Doping a mott insulator: Physics of high-temperature super-
conductivity,” Rev. Mod. Phys. 78, 17 (2006).

[51] G. S. Boebinger, “An Abnormal Normal State,” Science 323, 590 (2009).

[52] D. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge Uni-
versity Press, USA, 2005).

[53] J. C. Bonner and M. E. Fisher, “Linear Magnetic Chains with Anisotropic Coupling,” Phys. Rev. 135,
A640 (1964).

[54] A.Weiße andH. Fehske, “Exact Diagonalization Techniques,” in Computational Many-Particle Physics,
Lecture Notes in Physics, Vol. 739, edited by H. Fehske, R. Schneider, and A. Weiße (Springer Berlin
Heidelberg, 2008) p. 529.

[55] A. W. Sandvik, “Stochastic series expansion method for quantum Ising models with arbitrary inter-
actions,” Phys. Rev. E 68, 056701 (2003), cond-mat/0303597 .

[56] D. Ceperley, G. V. Chester, and M. H. Kalos, “Monte carlo simulation of a many-fermion study,” Phys.
Rev. B 16, 3081 (1977).

[57] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, and B. M. Terhal, “The Complexity of Stoquastic Local
Hamiltonian Problems,” (2006).

[58] S. Östlund and S. Rommer, “Thermodynamic Limit of Density Matrix Renormalization,” Phys. Rev.
Lett. 75, 3537 (1995), cond-mat/9503107 .

[59] U. Schollwöck, “The density-matrix renormalization group in the age ofmatrix product states,” Annals
of Physics 326, 96 (2011), arXiv:1008.3477 [cond-mat.str-el] .

[60] S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett. 69,
2863 (1992).

[61] G. Vidal, “Efficient simulation of one-dimensional quantum many-body systems,” Phys. Rev. Lett. 93,
040502 (2004), arXiv:quant-ph/0310089 .

[62] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, “Time-Dependent
Variational Principle for Quantum Lattices,” Phys. Rev. Lett. 107, 070601 (2011), arXiv:1103.0936
[cond-mat.str-el] .

[63] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, “Unifying time evolution
and optimization with matrix product states,” ArXiv e-prints (2014), arXiv:1408.5056 [quant-ph] .

[64] G. Vidal, “Class of Quantum Many-Body States That Can Be Efficiently Simulated,” Phys. Rev. Lett.
101, 110501 (2008), quant-ph/0610099 .

[65] F. Verstraete and J. I. Cirac, “Renormalization algorithms for Quantum-Many Body Systems in two
and higher dimensions,” arXiv:cond-mat/0407066 (2004), arXiv:cond-mat/0407066 .

8

http://dx.doi.org/10.1103/PhysRevLett.109.267203
http://arxiv.org/abs/1207.3957
http://dx.doi.org/ 10.1103/RevModPhys.78.17
http://dx.doi.org/10.1126/science.1168952
http://dx.doi.org/ 10.1103/PhysRev.135.A640
http://dx.doi.org/ 10.1103/PhysRev.135.A640
http://dx.doi.org/ 10.1007/978-3-540-74686-7_18
http://dx.doi.org/10.1103/PhysRevE.68.056701
http://arxiv.org/abs/cond-mat/0303597
http://dx.doi.org/ 10.1103/PhysRevB.16.3081
http://dx.doi.org/ 10.1103/PhysRevB.16.3081
http://dx.doi.org/ 10.1103/PhysRevLett.75.3537
http://dx.doi.org/ 10.1103/PhysRevLett.75.3537
http://arxiv.org/abs/cond-mat/9503107
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/1008.3477
http://dx.doi.org/ 10.1103/PhysRevLett.69.2863
http://dx.doi.org/ 10.1103/PhysRevLett.69.2863
http://dx.doi.org/ 10.1103/PhysRevLett.93.040502
http://dx.doi.org/ 10.1103/PhysRevLett.93.040502
http://arxiv.org/abs/quant-ph/0310089
http://dx.doi.org/ 10.1103/PhysRevLett.107.070601
http://arxiv.org/abs/1103.0936
http://arxiv.org/abs/1103.0936
http://arxiv.org/abs/1408.5056
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://dx.doi.org/10.1103/PhysRevLett.101.110501
http://arxiv.org/abs/quant-ph/0610099
http://arxiv.org/abs/cond-mat/0407066


[66] C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac, “Fermionic Projected Entangled Pair States,”
Phys. Rev. A 81, 052338 (2010), arXiv:0904.4667 .

[67] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics 21,
467.

[68] M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, “Quantum phase transition from a
superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39 (2002).

[69] J. Preskill, “Quantum Computing in the NISQ era and beyond,” arXiv:1801.00862 [cond-mat,
physics:quant-ph] (2018), 10.22331/q-2018-08-06-79, arXiv:1801.00862 [cond-mat, physics:quant-ph]
.

[70] P. Calabrese and J. Cardy, “Entanglement entropy and quantum field theory,” Journal of Statistical
Mechanics: Theory and Experiment 6, 2 (2004), hep-th/0405152 .

[71] B. Bauer and C. Nayak, “Area laws in a many-body localized state and its implications for topologi-
cal order,” Journal of Statistical Mechanics: Theory and Experiment 9, 09005 (2013), arXiv:1306.5753
[cond-mat.dis-nn] .

[72] G. Vidal, “Efficient Classical Simulation of Slightly Entangled Quantum Computations,” Phys. Rev.
Lett. 91 (2003), 10.1103/PhysRevLett.91.147902.

[73] E. H. Lieb and D. W. Robinson, “The finite group velocity of quantum spin systems,” Comm. Math.
Phys. 28, 251 (1972).

[74] M. B. Hastings, “An area law for one-dimensional quantum systems,” Journal of Statistical Mechanics:
Theory and Experiment 8, 24 (2007), arXiv:0705.2024 [quant-ph] .

[75] H. Li and F. D. M. Haldane, “Entanglement Spectrum as a Generalization of Entanglement Entropy:
Identification of Topological Order in Non-Abelian FractionalQuantum Hall Effect States,” Phys. Rev.
Lett. 101, 010504 (2008), arXiv:0805.0332 .

9

http://dx.doi.org/10.1103/PhysRevA.81.052338
http://arxiv.org/abs/0904.4667
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/ 10.1038/415039a
http://dx.doi.org/ 10.22331/q-2018-08-06-79
http://dx.doi.org/ 10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
http://dx.doi.org/ 10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/ 10.1088/1742-5468/2004/06/P06002
http://arxiv.org/abs/hep-th/0405152
http://dx.doi.org/10.1088/1742-5468/2013/09/P09005
http://arxiv.org/abs/1306.5753
http://arxiv.org/abs/1306.5753
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://projecteuclid.org/euclid.cmp/1103858407
http://projecteuclid.org/euclid.cmp/1103858407
http://dx.doi.org/ 10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/ 10.1088/1742-5468/2007/08/P08024
http://arxiv.org/abs/0705.2024
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://dx.doi.org/10.1103/PhysRevLett.101.010504
http://arxiv.org/abs/0805.0332

